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ABSTRACT: Careful design of catalytic reactors can reduce both
the cost and risk associated with new designs and can reduce
ownership costs significantly through better performance during
operation. Digital design techniques based on high-fidelity
predictive models now afford a way of doing this rapidly and
effectively. Such techniques make it possible to perform detailed
design of multitubular reactors taking into account multiscale
effects, from catalyst pore to industrial reactor, by combining high-
fidelity models with model-targeted experimentation. Further
benefits can be realized by implementation of the detailed model
online for monitoring, forecasting, and optimization. This paper
introduces the digital design approach for design, optimization, and
online implementation of fixed-bed catalytic reactors, with examples
taken from selected industrial cases.

1. INTRODUCTION
Digital design approaches are rapidly replacing traditional
experimentation-based techniques in many walks of process
design. The new approaches allow companies to benefit from
advanced analytical capabilities such as formal mathematical
optimization methods that allow determination of optimal
values of multiple design variables simultaneously to achieve
economically optimal process designs. However, there is still a
lot of discussion and debate about what the terminology means
as well as the activities and workflows involved in a digital
design approach. This paper presents a set of workflows and
methodologies that has evolved and been applied successfully
over many years to many different fixed-bed catalytic reaction
processes.

1.1. Digital Design of Catalytic Reactors: An Over-
view. Unlike traditional approaches, which rely on exper-
imentation, design experience, and heuristics, digital design
employs a model-based approach coupled closely with targeted
experimentation. Experimentation is used to support the
construction of a high-fidelity predictive model (or “digital
twin” in digital design terminology) of the process rather than
directly establish performance aspects of the industrial-scale
equipment. Once a model of sufficient accuracy is established,
the digital twin, rather than the experimental data, is used to
optimize the process design and operation.

The key to the approach is that the digital twin can be used
to explore many aspects of the decision space for both design
and operation, allowing a much more comprehensive, effective,
and rapid exploration of the process design space than can be
achieved by experimentation alone. It also allows technology
risks to be quantified and addressed systematically. Only the

most promising design alternatives need to go to pilot or a
demonstration plant testing for verification, keeping expensive
experimentation and physical testing to a minimum.

But how is the digital design approach achieved in practice?
Optimization of the design and operation of fixed-bed catalytic
reactors requires highly detailed models that can represent the
complexity at all levels, from the microscale reaction and
diffusion phenomena occurring in the catalyst to the
macroscale operation within the full industrial reactor
geometry. Despite such methods being known for decades,1
their applications across the research and development
(R&D)-to-operation lifecycle are still not seen to be widely
applied. Key reasons for not applying state-of-the-art methods
include the skills and time requirements necessary to develop
validated predictive models. However, there are now ready-to-
use tools available, as well as established methodologies that
allow both easy construction of digital twins based on high-
fidelity predictive models and their application in all the
required model-based activities over the whole R&D-to-
operation lifecycle.

This paper introduces a formal methodology for the digital
design of fixed-bed catalytic reactors that applies a combination
of high-fidelity reactor models and model-targeted exper-
imentation and takes advantage of well-established advanced
analytics and optimization techniques. The approach can
radically accelerate the development of complex reactors, and
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at the same time result in optimal reactor designs that
maximize performance, catalyst lifetime and other key
economic performance indicators (KPIs).

The fundamental approach involves the following steps:
(1) capturing all physics relevant to the problem of interest,

ideally using modular library models that allow construction of
reactor models of various configurations by users without
mathematical modeling background

(2) evaluation of model parameters such as (i) heat transfer
and flow resistance properties of the catalyst bed and (ii)
parameters of reaction kinetics from experimental data as well
as determining the minimum set of pilot plant experiments
needed for the evaluation of these properties

(3) performing optimization-based reactor design, where the
objective function considers all key operational and capital
expenditure contributions and the key decision variables and
constraints include the reactor geometry and operation
parameters (the reactor can be considered in conjunction
with other unit operation units such as separation columns if
necessary)

(4) making final adjustments to the reactor design based on
a hybrid model that includes a CFD representation of the
complex reactor shell-side geometry

(5) implementation, where required, of the detailed model
online within a digital applications framework for operational
monitoring, forecasting, and optimization

Implicit in the approach is the significant advantage of using
the same underlying models of catalyst and catalytic bed for
processing data from experiments (in order to evaluate
reaction kinetics and bed properties), for subsequent process
design and detailed design optimization activities, and for
implementing online or offline decision support tools for
operations, as shown schematically in Figure 1.

1.2. Key Bene� ts of Digital Design. Applying a digital
design approach to new process development has many
benefits. The key advantage is the ability to determine the
optimal equipment design, operating conditions, overall
process design, and even optimal operating procedures using
a predictive model, rather than by expensive and time-
consuming trial-and-error experimentation. Alternatives can be
rapidly screened, and poor designs can be eliminated, with only
the most promising alternatives going to pilot or a
demonstration plant for verification testing. The existence of
a predictive model makes it easy to accommodate changing

requirements and specifications during the process design
activity and to reoptimize for new conditions.

Another major advantage is that the combination of models
and experimental data can be used to improve the effectiveness
of the whole experimentation process. Model-based data
analysis provides accurate parameter values as well as estimates
of parameter reliability�information that can be used in formal
risk assessment and to provide a quantitative assessment of
where further experimental R&D effort should be focused.

Over and above these advantages, models capture corporate
knowledge in such a way that it can easily be transferred
between different groups in the organization, facilitating an
integrated design approach and allowing the transfer of
information-rich tools embodying deep process knowledge
for operational optimization and decision support, as can be
seen in section 5. There are obvious significant efficiency and
other gains related to working with the same (or an evolving)
model over the different scales and activities along the process
development and operational lifecycle.

1.3. Advanced Process Models. At the heart of a digital
design approach is an advanced process model: a high-fidelity
predictive model that embodies deep scientific and process
knowledge and can be used in many different activities across
the process lifecycle. It is essential that this model is predictive
across multiple scales and range of operation so that it can be
used both to explore a broad decision space as well as for
activities such as scale-up and detailed design.

Such models have two attributes that make them capable of
a significantly higher degree of predictive accuracy than the
“black-box” simulation models used in traditional flowsheet
simulators or data-driven/statistical models:

(1) They embody a high degree of physics and chemistry,
often at multiple scales, through the use of first-principles
chemical engineering relationships. The use of governing
equations based on scientific knowledge allows the model to
make predictions for conditions that are different from the
ones experienced in the laboratory. This is in sharp contrast to
statistical models, which are only valid within the range of
inputs used to develop the model.

(2) The empirical parameters in the model equations�for
example reaction kinetic parameters and heat transfer
coefficients�are derived directly from real-world (laboratory,
pilot or operating) data. This is done using formal

Figure 1. Digital design overview.
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mathematical optimization-based parameter estimation techni-
ques in a process known as model validation.

It is the combination of the first-principles relationship with
the empirical parameters adjusted for real-world data that
provides such models with a highly accurate predictive
capability over a wide range of operating conditions.

1.4. Applying Analytics and Optimization Techni-
ques. Once a fully validated model is available, it can be used
for many different activities, including the usual steady-state
and dynamic simulation, to determine performance for
different values of equipment parameters or feed and operating
conditions. However, more important are two advanced
analytic and design techniques that go far beyond standard
simulation to provide a true digital design capability:

(1) Large-scale, formal mathematical optimization (includ-
ing mixed-integer nonlinear or MINLP optimization), where
multiple decision variables are varied simultaneously to
maximize or minimize a (typically economic) objective
function while ensuring that equipment, process and product
quality constraints are observed. This allows the optimal values
of many design and operational variables to be determined
simultaneously, taking all important factors into account.

(2) Global system analysis (GSA), for systematically
exploring the process decision space by enumerating the effect
of variation of model inputs (e.g., values of key design
parameters) or uncertainty in model parameters (e.g.,
experimentally established kinetic parameters) that affect the
process KPIs. GSA activities include performing sensitivity and
uncertainty analysis in order to minimize technology risk.

It is through applying these analytical technologies that the
real value of the digital design approach are realized, by
allowing exploration of the design and risk space to an extent
and at a speed that are impossible to achieve by any other
means.

1.5. Tools Available. Various approaches and platforms
have been used for aspects of digital design over the years. In
general, the standard reactor models in conventional process
flowsheeting tools are not sufficient to capture the level of
predictive detail required, so practitioners have resorted to

using general programming languages or specialist platforms.
These include the following:

(1) Specialist models constructed using general program-
ming codes such as Fortran, C, and Visual Basic. In general,
such models are inflexible, often being programed for a specific
case, difficult to maintain and reuse, and inefficiently
implemented, giving rise to lengthy solution times that
precludes their use in optimization activities.

(2) Similar models constructed using specialist program-
ming environments such as MATLAB2a or Python.2b These
have more access to facilities such as, for example, parameter
estimation and general solution of nonlinear equations, and
tend to be more open and efficient, but suffer from similar
maintenance considerations to the models written in general
programming languages.

(3) Models created using custom modeling platforms such
as Aspen Custom Modeler2cand gPROMS.2d Such environ-
ments have the significant advantage of built-in mathematical
equation solvers, allowing modelers to focus on capturing the
correct governing equations without having to spend effort
deciding the sequence in which the equations should be solved,
or programming the solution method. Other capabilities
offered by these environments include parameter estimation,
access to physical property packages, and graphical flowsheet-
ing, which facilitate the inclusion of reactor models within
wider flowsheets. However, their use requires custom modeling
skills and maintenance, which are not readily available in many
organizations. Again, such custom models are often written for
a single purpose, and are difficult to maintain or extend.

(4) Formal digital design environments such as the
gPROMS ProcessBuilder, using built-in multiscale catalyst
and fixed-bed reactor library models. In general, such
environments provide ready-to-use tools designed to be used
by people with no prior experience in writing models; they are
flexible enough to allow various multiscale reactor config-
urations while being customizable enough to allow easy
capture of in-house knowledge on reaction kinetics and heat
and mass transfer correlations.

The examples shown below are implemented in gPROMS
ProcessBuilder, using PSE’s Advanced Model Library for

Figure 2. Model validation cycle.
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Fixed-Bed Catalytic Reactors (AML:FBCR). All of the
fundamental models used in the cases described here were
taken from the model library, with the exception that custom
modeling was used to create the reaction kinetics mechanisms.

2. DEVELOPING A HIGH-FIDELITY PREDICTIVE
REACTOR MODEL

Fundamental to the approach is the need to create a reactor
model that is predictive across a wide range of process
operating conditions and multiple scales. This involves creating
a validated first-principles model of the process, through two
key activities: (a) construction or selection of models
containing all the important physics and chemistry relation-
ships and (b) fitting unknown model parameters to
experimental data derived via a model-targeted experimenta-
tion approach.

2.1. Model Validation Cycle. The model validation cycle
is a comprehensive, generic workflow for estimating model
parameters based on experimental data, analyzing the
uncertainty in both the model and in the data, designing
further experiments for maximum information content, and
iterating until models are validated to the required level of
accuracy. The cycle is shown in Figure 2.

The steps in the cycle can be described as follows:
(1) Create a model of the experimentation process,

including a model of the reaction kinetic mechanisms
(the “experiment digital twin”).

(2) Perform the initial experiments. Divide the experimental
data into

(a) data to be used for estimating the empirical
parameters in the model

(b) data retained for validation of the fitted model
(3) Use the model in conjunction with the data from point

2a to estimate the model parameters.
(4) Perform validation and uncertainty analysis using the

model with fitted parameters and data from point 2b.
(5) If the analysis shows an acceptable level of confidence in

the parameters, then leave the process. The model is
now validated.

(6) If not, then the experiment digital twin can be used to
design a next experiment that will do one of the
following:

(a) provide further information for refining the
parameter accuracy (i.e., reducing uncertainty)

(b) allow discrimination between different proposed
models (for example of the reaction kinetic
mechanisms) to determine which is likely to be
the better representation

Successful execution results in an experiment digital twin
that mimics the execution of the real experiment within
acceptable accuracy and where the confidence intervals for the
key parameters being estimated are within acceptable bounds.

2.2. Constructing Reactor Models with All Relevant
Physics and Chemistry. For digital design activities
discussed in this paper, a fixed-bed catalytic reactor model
will typically need to take into account all the effects shown in
Figure 3. Typical physics and chemistry relationships that need
to be included are as follows:

• the reaction set, including equations for all reaction rates
• equations for the conservation of mass, species,

momentum, and energy, both at the bed level (transport

in bed radial and axial direction) and at the pellet level
(intraparticle transport)

• heat and mass transfer relationships, including, where
appropriate, diffusion of reactants and products to and
from the catalyst particle

• the catalyst (geometry, active site information, and pore
information)

• the catalyst bed characteristics (pressure drop as well as
bed and tube wall heat transfer characteristics)

• thermodynamics and physical properties
Traditionally, such a model was constructed by deriving and

compiling all the relevant governing equations, as described in
numerous textbooks.1 Alternatively, it is now possible to use
published model libraries that already include all relevant
phenomena then only adding custom reaction rate equations
and/or heat and mass transfer correlations. Ideally, the model
is constructed in a modular form that allows the components
(for example, the reaction set or bed sections) to be easily
utilized within other geometries, for example, during
subsequent scale-up activities.

Creating a suitable reaction scheme model needs some
consideration and engineering judgment. A typical approach is
to start with all known reactions, for example, from literature
or in-house R&D activities. This may give a larger number of
reactions than it is feasible to study within the time constraints
of a typical reactor design and optimization project.

In most cases, the list of all potential reactions needs to be
pruned down to a manageable number of key reactions for
which the kinetic parameters can be determined based on the
availability of suitable experimental data. Typically, this
involves lumping several reactions under a single reaction,
where it is not important to differentiate between the reactions,
and removing others entirely.

It is possible to refine the reaction set using model
discrimination techniques as part of the validation cycle
described below. For example, poor confidence intervals
resulting from estimating parameters from experimental data
imply that the reaction system described in the model could
not have produced the observed data, and that additional or
different reactions have to be considered. This is a subject that
merits treatment in its own right and is not covered here.

Figure 3. Phenomena taken into account in the catalyst pellet and
fixed bed model.
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2.3. Model-Targeted Experimentation. In digital design,
the purpose of experimentation is not to predict the behavior
of the commercial-sized equipment; that is the job of the full-
scale validated model. The objective of experimentation is to
provide data that can be used to determine the most accurate
possible values of empirical parameters within the model.

In reality, and depending on the system being designed, it
may be necessary to perform experiments at different scales to
estimate parameters describing different phenomena. For
determining reaction kinetics, often small-scale experiments
are employed, for example, using a small fixed-bed tubular
reactor or recycle reactor.4 Larger-scale experimentation using
single tube pilot plant experiments may be warranted to
determine coefficients in correlations that describe transport
phenomena in the catalyst bed, such as pressure drop, mass
dispersion, intrabed heat transfer coefficients, bed-to-wall heat
transfer coefficients, and so on. Ideally, the reaction kinetics
and the bed-scale transport phenomena are determined
independently in two experiment sets.

2.3.1. Experimental Set for Evaluation of Reaction
Kinetics. The primary objective of kinetic experiments is to
determine the intrinsic reaction kinetic parameters (reaction
order with respect to reactants, activation energies, and pre-
exponential coefficients, as well as adsorption and desorption
factors) for the catalytic reactions to a suitable level of
confidence. A secondary objective, especially for processes
where the reaction mechanism is not yet well understood, is to
determine the statistically most suitable kinetic model for the
given process. Experiments are typically executed covering a
wide range of conditions to provide sufficient data for
calculation of the kinetic constants.

The size of most catalyst pellets of commercial interest
represents a compromise between minimizing pressure drop
(which favors larger pellets) and decreasing the magnitude of
intraparticle composition gradients (which favors small
pellets). Intraparticle diffusion of the magnitude encountered
in practice results in depletion of reactants and enrichment of
products away from the surface of the catalyst, which in turn
can result in an increase in the rate of undesirable secondary
reactions.

Commonly recommended practices for experimental eval-
uation of reaction kinetics for catalytic reaction systems are
discussed in many textbooks. Froment and Bischoff

1

summarize the requirements and industrial practice, stating
that kinetic experiments on heterogeneous catalytic reactions
are generally carried out in flow reactors where the flow is
considered to be plug-flow type. This requires a sufficiently
high velocity and a tube-to-particle diameter ratio of at least
10, to avoid short-circuiting along the wall. Temperature
gradients in radial and longitudinal directions should be
avoided.

In order to satisfy the recommended tube-to-particle
diameter ratio of 10 and at the same time to keep the catalytic
bed spatially isothermal for exothermic reaction systems, the
bed needs to be made of pulverized catalytic material loaded
into a very small diameter cooled reactor. Such an approach is
expected to deliver what is commonly referred to as “intrinsic
kinetics”. Moreover, if the internal resistances in the industrial
reactor catalyst are of importance, then the laboratory
experiments need to include several particle diameters1.

Nevertheless, using pulverized catalyst for kinetic model
development has certain issues and limitations, mainly the
following: (1) Difficulties exist in ensuring uniform catalyst

distribution in the bed when the bed is diluted by inert
particles in order to maintain close to isothermal conditions.
(2) Exposure of active sites to the reaction mixture in
pulverized catalyst is different than in the pore structure of a
pellet.3 (3) Such an approach cannot be used for catalyst
pellets with nonuniform distribution of active material (e.g.,
egg-shell pellets). (4) Industrial experience shows that such
“intrinsic kinetics” often do not scale well to the commercial
pellet size in industrial scale reactors.

Experimentation with actual catalyst pellets, rather than with
pulverized catalyst, eliminates most of these issues. In addition,
if experiments with actual pellets are performed with pellets of
different size and shapes, then it is possible to estimate the
effective diffusion path (expressed as pellet tortuosity factor)
together with the reaction kinetics. If the use of such pellets
means that the isothermal assumption no longer holds, then
the model needs to consider the actual temperature profile in
the catalyst bed. This is not a major issue as long as the
temperatures in the bed are measured.

When using actual catalyst pellets, it is necessary to consider
intraparticle diffusion limitations within the experiment digital
twin model. This is achieved by using a detailed catalyst pellet
model with a spatial distribution,5 which allows for taking into
account intrapellet variations; in fact, the same model that
needs to be used when modeling the larger scale reactor at
later stages of the design. Thus, another advantage of using the
actual pellet size for the kinetic experiments is that it minimizes
the risk during process scale-up to pilot- and commercial-size
reactors, as the pellets (and their model representation) are the
same across the scales. This suggests that using commercial-
size pellets is preferable to using a pulverized catalyst.

Digital techniques based on the type of high-fidelity
predictive models used for industrial-scale reactor engineering
can be applied to designing the experimental setup for
evaluating the chemistry kinetics of commercial catalyst pellets.
The digital techniques allows formulation of a single,
consistent practice for evaluation of the chemistry kinetics of
commercially available catalyst or catalyst under development.
Such a practice involves the following:

(1) loading the catalyst pellets to a well-instrumented,
cooled tubular reactor of diameter that ensures a tube-to-
particle diameter ratio of at least 10 (which implies the reactor
diameter needs to be higher than 30 mm for most
commercially available pellets and that the reactor must be
equipped with a centrally located thermo-well that extends
beyond the length of the bed)

(2) using a catalyst bed of sufficient length to achieve space
velocities the same as or higher than in an industrial reactor
while avoiding very low superficial gas velocities and with a
feed flow rate that can be accommodated within the budget of
a chemistry kinetics evaluation project

(3) carrying out experiments at various operation conditions
while adjusting the bed length and feed flow-rate to maintain
the conversions from low values to full commercial conversion.

Such a procedure goes beyond typical experiment design,
and it implies that “experiment design” does not just mean
determining the conditions to run each experiment but also
designing some of the equipment characteristics (e.g., sizes of
bed, positioning of sensors, etc.). If undertaken rigorously, then
the reaction kinetic and other parameters determined from
kinetic experiments on catalyst pellets will be scale-invariant
(i.e., valid over the full operating range of the commercial
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unit). This means that the reaction model constructed in this
activity can readily be used for scale-up.

2.3.2. Experimental Set for Bed-Scale Transport Phenom-
ena. The multitubular, cooled reactor type is typically
employed for handling highly exothermic and difficult-to-
control reacting systems. A design that constructs the reactor
out of very low diameter tubes would be intrinsically safe but
come at high cost. The tube diameter in multitubular, cooled
reactors represents a compromise between cost and safety.

There is little room for preventing runaway incidents or
recovery from them by manipulating the coolant temperature
on the reactor shell side. This is because 90% of the overall
resistance to heat transfer from the catalyst within the tubes to
the coolant on the shell side comprises radial heat conduction
within the bed and the additional heat transfer step at the
catalytic bed�inner wall boundary. In order to create a model
capable of predicting runaway transient buildup and recovery
from the same, it is necessary for some of the heat transfer

Figure 4. Experiment digital twin of single-tube experiment showing reactant mixing, lab reactor, and analysis as implemented in gPROMS
ProcessBuilder.

Figure 5. Liquid-phase pilot-plant reactor model representing inert sections, catalyst bed, cooling jacket and flash units representing the sampling
procedure.
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parameters in the reactor model to be evaluated experimen-
tally. Another reason for this is that literature correlations
always have some associated uncertainties; they have typically
been developed using ideal particles (e.g., monodispersed
spheres) and different fluid mixtures at ideal conditions (e.g.,
air at atmospheric pressure and moderate temperatures) and
do not necessarily reflect the situation in the reactor being
considered.

To address this, single-tube experiments are used to fine-
tune coefficients in correlations for effective bed heat transfer
and pressure drop. Such experiments typically involve packing
a tube with the target catalyst, then measuring flows,
compositions, and temperature profile inside the bed and
pressure drop under carefully controlled conditions. The
validated catalyst model from the reaction kinetics experiment
is deployed within the catalyst-filled tube model, which
typically takes into account axially and radially distributions
in the bed.

2.3.3. Creating the Experiment Digital Twin(s). The digital
design approach applies high fidelity models to process
experimental data. Such high-fidelity models need to be
capable of handling data from nonisothermal beds, and
account for intrapellet mass and energy diffusion limitations.
This involves creating or deploying first-principles models of
the system for which experimental data are to be fitted,
including the description of the equipment, catalyst, and key
phenomena that have an impact on the experimental results.
Figure 4 shows the flowsheet representation of such a model.

The objective of creating this “digital twin” of the
experimentation process is to provide a framework within
which to process the experimental data with the objects of (a)
fitting empirical model parameters and (b) estimating the
uncertainty within those parameters in order to determine
whether further experimentation is required in order to achieve
an acceptable level of risk.

Figure 5 shows an example of the model flowsheet for the
experiment digital twin for a single-tube liquid-phase fixed-bed
pilot plant reactor. The reactor tube here comprises a central

section, e.g., a meter long or more, filled with catalyst pellets,
with inert bed sections placed at the top and at the bottom of
the bed. The two flash units simulate the sampling procedure.
The first vessel simulates depressurization from high pressure
to atmospheric conditions, and the second vessel simulates the
increase in temperature to ambient during gas chromatograph
injection. Modeling the sensors is an important requirement
for correct mass balance reconciliation and interpretation of
experimental data. The model used for data analysis needs to
reflect the physical reality of the experimental setup as closely
as possible.

In practice, it is not always possible to determine the
reaction kinetics fully just based on the lab-scale experiments.
In such cases, simultaneous determination of kinetic and
transport parameters can be undertaken combining data from
different scales/equipment using models that include all
relevant phenomena.

2.4. Estimating Model Parameters from Experimental
Data. The parameter estimation capabilities provided as part
of digital design tools make it possible to estimate
simultaneously large numbers of the parameters occurring in
complex nonlinear mathematical models using measurements
from any number of dynamic and/or steady-state experiments.

Once the planned experiments have been performed, the
experiment digital twin is used to process experimental data in
order to estimate the desired model parameters. Maximum
likelihood techniques allow the errors inherent in practical
experimentation, for example, instrument errors, to be taken
directly into account or indeed to be estimated simultaneously
with the model parameter values. This provides important
quality assurance information.

In addition to parameter values, the estimation process also
yields estimates of the accuracy of these values in the form of
confidence intervals and other information on uncertainty. The
confidence (uncertainty) information generated for each
parameter is used to determine where the most significant
areas of risk inherent in the data are, and thus where
subsequent experiments should be focused. Figure 6 provides

Figure 6. Typical results from the parameter estimation step.
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an indication of accuracy of model predictions for concen-
tration of one of the reaction products.

2.5. Design of Experiments in Model-Targeted
Experimentation. Frequently, the confidence intervals from
the model-based data analysis indicates that the parameters
calculated from the initial experimental data are not within
acceptable risk limits, and further experimentation is required.

A major development in the past few years has been the
emergence of model-based optimization techniques for the
design of experiments. In contrast to the usual statistically
based techniques (e.g., factorial design), model-based experi-
ment design takes advantage of the information that is already
available within the experiment digital twin, in the form of the
mathematical model, to design experiments that yield the
maximum amount of information, thereby minimizing the
uncertainty in any parameters estimated from the results of
these experiments. Rather than being aimed at providing, for
example, sets of concentration data at certain temperatures for
use in the actual reactor design, these experiments are aimed

solely at generating information that increases the accuracy of
model parameters to an acceptable level.

The process is known as model-targeted experimentation.
This optimization-based technique uses the experiment digital
twin to propose further experiments that maximize information
content in critical areas. Model-targeted experimentation can
thus generate the maximum accuracy of model parameters with
the minimum number of experiments.

2.6. Model Uncertainty Analysis. One of the primary
focuses during the model validation phase is to ensure high
reliability of estimated model parameters through careful
choice of experimental conditions. Reliability of estimated
model parameters can be assessed using statistical significance
measures such as 95% t-values, confidence intervals, confidence
ellipsoids, and so on for the estimated parameters. However,
these statistical measures do not give a direct assessment of the
impact of model parameter uncertainty on the KPIs of the
industrial reactor.

Uncertainty quantification though GSA offers insights into
the effect of model parameter uncertainty on KPIs. For

Figure 7. Example of results of GSA-based uncertainty analysis applied to an industrial ethylene oxide reactor; the effect of uncertainty in kinetic
parameters on process KPIs.

Figure 8. Effect of uncertainty in model parameters (rate constant of main reaction in ethylene oxide reactor) on prediction of process KPIs
(ethylene conversion and ethylene oxide selectivity).
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example, the GSA feature within the gPROMS platform uses
Monte Carlo method based uncertainty analysis by performing
multiple model evaluations (simulations) incorporating the
model parameter uncertainty statistics obtained from the
model validation phase. The results of these evaluations are
then used to determine the uncertainty in the KPIs. Figures 7
and 8 show examples of results of applying GSA-based
uncertainty analysis to quantify the effect of model parameter
uncertainty on KPIs in an ethylene oxide reactor.

3. OPTIMIZATION-BASED DESIGN USING THE
REACTOR DIGITAL TWIN

Once the parameter confidence analysis indicates an acceptable
level of accuracy for the parameters, the submodels can then be
used in construction of the full-scale reactor digital twin. It is
this model that is then used for exploring the decision space
and determining the optimal design.

If necessary, the reactor digital twin can then be validated
against operating or test run data to determine, for example,
overall heat transfer or flow coefficients. However, it should
not be necessary, and indeed would in most cases be
counterproductive, to estimate parameters such as reaction
kinetic constants already fixed from the earlier laboratory or
pilot validation at this stage.

3.1. Creating a Multitubular Fixed-Bed Reactor
Model. An example of a multitubular reactor model is
shown in Figure 9. It is created by combining catalyst bed tube

sections and inert bed tube sections with cooling compartment
sections. The tube sections differ in catalyst to inert ratio. The
position of baffles on the shell side of the reactor are taken into
account by using combinations of tube/catalyst�cooling
compartment for each unique combination.

The detailed submodels from the experiment digital twin, for
example, the validated reaction kinetic mechanisms, and other
relevant information generated from the experimentation
phase are incorporated within the reactor component models,
such as the bed heat transfer coefficients.

The key assumption in the configuration shown in Figure 9
is that cooling is represented by well-mixed compartments. If
there is likely to be strong spatial variation of coolant
temperature across the tube bundle, then the reactor can be
configured using a more sophisticated compartment structure
or the hybrid modeling techniques discussed under detailed
reactor design in section 4.1 below. If necessary, then multiple
tube models can be linked to the cooling compartment models.

3.2. Exploring the Decision Space Using Simulation.
Before moving to full reactor optimization, the reactor can be
simulated for various values of catalyst and reactor parameters,
operating conditions, and so on in order to explore the
decision space manually.

An example of such a simulation study is shown in Figure
10. Here, a model of an acrylic acid reactor is being used to
determine the effects of a decision on whether to use solid
cylinder or hollow cylinder catalyst forms. The predictions of
molar fractions of reactants and products through the pellet
radius make it possible to quantify the effect of catalyst
geometry on reactor KPIs such as selectivity, production rates,
and reactor temperatures. This example provides a good
illustration of the level of information that can be generated
using validated high-fidelity models that take into account mass
and heat transfer phenomena down to catalyst pore scale.

Once the fully validated model of the process is available in
the form of the reactor digital twin, it is ready to be used for a
variety of design and operational activities. Key to these is GSA
for performing uncertainty analysis and exploring the decision
space ahead of formal model-based optimization. GSA in
gPROMS allows the comprehensive exploration of the
behavior of a system over domains of any user-selected subset
of its input variables (“factors”) and output variables
(“responses”). This provides a quick, easy, and systematic
way to explore the complex process design and operational
decision space using high-fidelity models.

3.3. Optimization-Based Design. It is difficult enough to
keep track of how changes in a small number of decisions affect
a single objective (e.g., a measure of economic performance).
It becomes virtually impossible to use trial-and-error
simulation to achieve improvements in the design objective
while meeting all constraints when dealing with multiple design
decisions.

This presents considerable challenges for the optimal design
of a multitubular reactor, which involves making decisions on a
large number of design variables while accounting for the
complex phenomena occurring within a large number of tubes
as well as complex cooling fluid behavior on the shell side, even
before integration with the separation section is considered.
This is where formal mathematical optimization techniques,
applied to a trusted predictive model, offer enormous value.
Optimization-based design makes it possible to determine
multiple potential objectives simultaneously, subject to multi-
ple constraints, by making many design decisions simulta-
neously.

Figure 11 shows some of the key decisions that can be made.
These include both physical configuration decisions such as
the following:

• reactor shell diameter
• number of active reactors in parallel
• tube details: diameter and length
• baffle design: number, span, window size, spacing
• tube bundle geometry: inner and outer tube limit, tube

arrangement and pitch
and decisions on operating conditions, such as the following:

• coolant temperature and flow rate
• minimum average coolant velocity within tube bank
• mass proportions of reactants in feed
• process stream inlet temperature

Figure 9. Creating the full-scale reactor model from tube section and
cooling compartment submodels.
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Typical constraints taken into account during the
optimization are design and operating constraints such as the
following:

• constraints on reactor dimensions
• reactor shell-side velocity constraints (to prevent tube

fouling and tube erosion)
• quality constraints on products
• maximum parts per million (ppm) levels of impurities
• various temperature/pressure safety constraints
• coolant supply and return temperature constraints
• effluent concentration constraints

Formal mathematical optimization provides not only the
solution to the optimization problem (the optimal values of the
decision variables) but also the values of Lagrange multipliers
(a.k.a. “shadow prices”) for decision variables hitting their
imposed constraints, a measure of the potential benefit that can
be achieved in the design objective by relaxing binding
constraints. This provides valuable information for revising
design constraints and brainstorming about how to overcome
them. The use of optimization thus provides valuable
quantitative information the design team for support of design
decisions at every step.

3.4. Optimization Considering Reaction and Separa-
tion Sections Simultaneously. During process design there
are many trade-offs to consider. Equipment decisions on the
reactor may improve the reaction section economics but have a
negative impact on the economics as well as the operability of
the plant as a whole. In many cases, there is a significant
benefit from considering the entire plant (i.e., reactor plus
separation section) simultaneously during design in order to
take decisions that result in the overall best economics.

Rodriguez et al. describe such a case where a petrochemicals
company developing a new process optimized the initial design
of a plant that comprises a complex multitubular reactor and a
separation section with many distillation columns (one being
an azeotropic distillation and the second involving reaction),
plus large recycles.6 The complexity of the reactor and the
separation section combined with the number of optimization
decision variables meant that this could not be attempted using
traditional simulation methods, which would have involved a
trial-and-error analysis based on repeated simulations involving
the variation of a few variables at a time.

Following laboratory experimentation to determine reaction
kinetic and bed parameters, a high-fidelity simulation model
was built of the integrated reactor and separation section, as
shown in the example in Figure 12. These were initially solved

Figure 10. Using the Reactor Digital Twin to make catalyst decisions.

Figure 11. Typical optimization decision variables for design of a
multitubular reactor.
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separately. The models were then integrated, and the recycle
loops were closed. The whole-plant digital twin was then
optimized, using an economic objective function that
represented annualized capital plus operating cost.

The rigorous mathematical optimization considered 49
continuous and discrete (integer) decision variables simulta-
neously, distributed over the process flowsheet. Decision
variables included those for the multitubular reactor described
above as well as separation section design and operation
variables. In addition, the decision variable set included
configuration and topology decision variables, such as the
location of feed trays and column bypasses, which allowed
flowsheet alternatives to be considered as part of the
optimization.

The resulting optimal design represented an increase in total
annualized profit of several tens of millions of Euros per year,
primarily due to large savings in operating and capital cost.
This was achieved by the elimination of two distillation
columns as well as heat integration, which yielded significant
operating cost savings with attractive return on investment.

4. DETAILED DESIGN OF MULTITUBULAR REACTORS
The models described in previous sections approach multi-
tubular reactors as bundles of identical tubes exposed to the
same boundary conditions. This assumption facilitates an
effective and workable approach to basic reactor design.
However, in most multitubular reactors, different tubes are
exposed to different thermal boundary conditions due to
differences in their positioning with respect to inlets, baffles,
and other geometry-related factors. Where there is marked
variation in conditions, a more sophisticated approach is
required.

The effect of these differing local conditions is shown in
Figure 13.8 The interaction between shell and tubes leads to
tubes in different parts of the bundle seeing different coolant
temperatures (left-hand plot), leading to different rates of
reaction and potentially significant radial variation in tube
center temperature profile (center plot) across the tube bundle
at any axial position. This in turn results in differences in yields
from tubes at different parts of the bundle (right). The wide
variation in tube center temperatures leads to suboptimal
catalyst performance and lifetime, as well as off-specification
product and purity giveaway, and limits the ability to control
reactor performance by adjusting overall reactor temperatures.

Figure 12. Simultaneous optimization of reaction and separation sections with multiple decision variables.

Figure 13. Nonoptimal reactor design showing different shell-side temperatures (left), leading to different tube center temperatures (center) and
yields (right).8
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Because of the interaction between shell and tubes, the only
way to address this reliably is to use detailed models of both
shell and tube side to accurately quantify heat transfer at all
points throughout the reactor.

4.1. Hybrid Modeling. A hybrid modeling approach, that
couples the catalyst-filled tube bed models described above
and a CFD model of the shell side is a computationally
efficient and effective way of quantifying the heat transfer
throughout the reactor in a rigorous way. As implied, this
simultaneouslyconsiders both of the following:

(1) Fluid dynamics on the shell side are calculated to a high
degree of accuracy by a computational fluid dynamics (CFD)
package in order to provide accurate shell-side heat transfer
coefficients and temperature profile. In many design scenarios,
such a CFD model already exists for investigating flow
dynamics through distributors and the tube bundle.

(2) Catalytic reactions and bed heat transfer phenomena are
occurring in the tubes (which are in turn affected by the shell-
side fluid temperature). These are calculated to a high degree
of accuracy by the tube models described above to provide the
correct tube wall temperatures for the heat transfer calculation.
The approach is shown schematically in Figure 14.

If the proposed design shows large differences in temper-
ature profiles, then the hybrid model can be used to investigate
changes to either the shell-side design geometry or tube-side
aspects such as the catalyst loading in order to reduce these
differences. The objective is typically to provide optimal heat
control in the shell-side fluid and thus eliminate the danger
areas where hotspots (and potential catalyst burnout) can
occur.

4.2. Optimizing the Detailed Design. In the case shown
in Figure 13,8 the initial design showed large differences

between the temperature profiles for tubes at different radial
positions and is clearly a nonoptimal design that carries risk of
hot-spot formation and subsequent catalyst burn-out in certain
areas of the tube bundle.

This can be addressed using the hybrid modeling approach.
In the example, the combined shell-tube model was
constructed using around 100 “representative tubes” to
represent key sections of the reactor bundle, combined via a
proprietary software interface with the CFD model of the shell
side. The interface software handles all data flows, as well as
the interpolation of data between the models.

Using the hybrid model, it is possible to study the effect of
aspects of geometry (for example, baffle spacing, baffle pitch,
tube pitch, and the detailed geometry of the 3D tube bank)
that affect the shell-side coolant flow and heat transfer
coefficients. This is done by iteratively adjusting the
dimensions within the CFD model and simulating the reactor
with the altered geometry until more uniform performance is
achieved. It is also possible to investigate the effect of tube-side
“configuration” aspects such as the catalyst layer height and
catalyst loading.

The results of optimizing the reactor shell geometry are
shown in Figure 15. By adjusting aspects of the internal
geometry, it has been possible to achieve virtually uniform
radial temperature profiles. As a result, the reactants in all tubes
are subject to the same or very similar external conditions at
any cross section of the reactor, with little discrepancy of
performance arising from the radial position of the tube within
the tube bundle. This means that the reactions occurring
within the tubes, and hence the conversion, are very similar for
all the tubes across the bundle.

Figure 14. Hybrid modeling approach overview.

Figure 15. Optimized reactor design showing different shell-side temperatures (left), leading to different tube center temperatures (center) and
yields (right).8
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The detailed understanding of performance that can be
gained by studying the results shows that there is potential to
run the reactor at higher temperature, if this is desirable to
increase conversion. This is a decision that can be taken as
required by operational staff.

5. DEPLOYING THE REACTOR MODEL TO
OPERATIONS: REAL-TIME PLANT MONITORING
AND OPTIMIZATION

As evident above, a digital design approach can accelerate
development and reduce the cost of designing reactor systems
from concept onward. Moreover, the better design and greater
operating efficiency resulting from applying the digital design
approach to enhance the reactor economics over its opera-
tional lifetime.7 However, there is potentially significant
additional benefit if the reactor digital twin can also be used
to provide day-to-day economic performance improvements
online, executing within or in conjunction with the plant
automation system.

Recent developments in digital operations technology,
including enhanced availability and reliability of plant data,
increases in computational power, and enhancements in
modeling and solution technology, mean that the detailed
reactor models can now be deployed as part of operational
digital twins for a variety of purposes. Typically, these combine
model predictions with current and historical plant data, to
perform the following functions:

(1) Long-term health monitoring. Current and historical
plant data is used in conjunction with the model to track drift
in key equipment and process parameters, such as catalyst
activity, coke build-up in furnaces, and heat transfer
coefficients in heat exchangers. Such models are typically

“self-calibrating”, adjusting parameters continually as new data
comes in, to provide important operational data with little or
no maintenance. The information generated by such digital
twins, representing the “up-to-date” state of the plant, is also
crucial input to the other digital twin applications listed below.

(2) Soft sensing. Real-time plant data is combined with
model predictions using techniques such as state estimation to
generate accurate, real-time values for hard-to-measure KPIs.
The information generated can be used to provide decision
support information to operations or in enhanced control
schemes.

(3) Operations decision support applications. The up-to-
date plant model, adjusted to reflect the current plant state
using the updated parameters from the self-calibrating long-
term health monitoring twin, can be used for “what-if”
simulation of potential operating scenarios, allowing operators
to determine the effects of operating decisions before
implementing them.

(4) Forecasting and what-if prediction. Similarly, the up-to-
date plant model can be used to predict performance over a
longer time horizon or determine the optimal dates for
maintenance, catalyst replenishment, or cleaning of equipment.

(5) Real-time optimization. The ultimate digital twin
application is often real-time optimization, using the up-to-
date plant model to determine optimal set points for process
variables in order to maximize the economic performance of
the reactor in real time or to optimize operating trajectories in
order to run at maximum profit while meeting scheduled
catalyst replacement dates.

Depending on the application and the destination of the
resulting information, such applications can either be
embedded within the plant automation system or run on the
management network (it is also possible, depending on

Figure 16. Digital applications platform framework for implementing models online.
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confidentiality and security considerations, to run twins as
cloud-based applications). Depending on how the information
is to be used and by whom, results are presented in several
different forms associated with different external data servers
with which the digital twin communicates, for example via the
DCS screens (faceplates) or via web-based dashboards linked
to the database.

5.1. Software Architecture. Deploying high-fidelity
models online requires a robust, integrated software framework
that takes care of all essential activities for online
implementation and execution�management of external and
internal data exchange, data cleansing and validation, and
execution scheduling of the computational modules perform-
ing the calculations using the model.

An overview of the overall architecture for such a framework
is shown in Figure 16. Its key components include the
following: an executive for dealing with external and internal
data exchange, execution scheduling, and monitoring; data
validation modules for cleaning, reconciling and generally
processing data for use in the computational modules (CMs);
and one or more CMs, which are the workhorses that perform
activities such as simulation, optimization, state estimation, and
so on, typically combining plant data, external (e.g., economic)
data and/or data generated by other CMs with a plant model.

5.2. Example: Acetylene Converter Decision Support
Twin. Most catalysts deployed in catalytic reactors deactivate
over time. A reactor digital twin, based on a rigorous model
and kept updated by reconciling plant data, can be used to
monitor catalyst deactivation as well as optimize operating
conditions throughout the catalyst aging cycle using state
estimation and optimization techniques. This provides valuable
decision support for process operations.

Figure 17 shows an example of a reactor monitoring and
optimization system for an ethylene plant acetylene converter
implemented within the digital applications framework. This
performs real-time monitoring of the reactor, to determine the
current catalyst state over the period of operation, as well as to
provide information about the internal reactor state that is not
usually available to operators. It can then be used to optimize
current operation taking into account the current catalyst state.

Typical benefits of such applications include the following:

• better operations through enhanced real-time decision
support information

• improved maintenance scheduling from run length
prediction

• improved economics from real-time optimization
• improved asset integrity from improved process health

monitoring
• better-trained operators from operator training that

utilizes realistic models of complex processes

6. CONCLUSIONS
Recent advances in data collection, computational power, and
modeling and solution platforms have made it possible to
perform comprehensive digital design activities to accelerate
development of new reactors and optimize their design in a
systematic and well-proven workflow. This brings many
benefits including the following:

(a) reduced experimentation time through targeted exper-
iments

(b) the ability to explore many different design options for
the reactor in a short space of time, using systematic
model-based approaches

(c) the potential for an optimal reactor design with uniform
performance over all tubes in the reactor, providing
greater controllability and operational flexibility as well
as extended catalyst life

(d) the ability to optimize reactor design by making
adjustments to reactor geometry and catalyst loading,
through the ability to consider shell-tube interactions
taking into account all relevant physics and chemistry

(e) the ability to optimize reactor and process design to
ensure the most cost-effective design in terms of both
initial capital investment and operating cost

(f) the ability to deploy high-fidelity reactor models online
for monitoring, soft-sensing, forecasting and optimiza-
tion

This paper illustrates that digital design techniques can be
applied to generate economic benefits from the experimental
stage onward. Indeed, the earlier model-based techniques are
brought to bear during process development and design, the
better. Moreover, many key performance improvements can

Figure 17. Reactor monitoring and optimization system dashboard.
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result from very small and subtle changes�for example, to the
internal geometry of the reactor. These are effects that are
impossible to determine without a detailed reactor model using
the reactor digital twin approaches described here.
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